Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(3): 2241-2246, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535629

RESUMO

Auditory brainstem responses (ABRs) were measured at 57 kHz in two dolphins warned of an impending intense tone at 40 kHz. Over the course of testing, the duration of the intense tone was increased from 0.5 to 16 s to determine if changes in ABRs observed after cessation of the intense sound were the result of post-stimulatory auditory fatigue or conditioned hearing attenuation. One dolphin exhibited conditioned hearing attenuation after the warning sound preceding the intense sound, but little evidence of post-stimulatory fatigue after the intense sound. The second dolphin showed no conditioned attenuation before the intense sound, but auditory fatigue afterwards. The fatigue was observed within a few seconds after cessation of the intense tone: i.e., at time scales much shorter than those in previous studies of marine mammal noise-induced threshold shifts, which feature measurements on the order of a few minutes after exposure. The differences observed between the two individuals (less auditory fatigue in the dolphin that exhibited the conditioned attenuation) support the hypothesis that conditioned attenuation is a form of "self-mitigation."


Assuntos
Fadiga Auditiva , Golfinhos , Animais , Audição , Som
2.
J Acoust Soc Am ; 153(1): 496, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732272

RESUMO

All species of toothed whales studied to date can learn to reduce their hearing sensitivity when warned of an impending intense sound; however, the specific conditions under which animals will employ this technique are not well understood. The present study was focused on determining whether dolphins would reduce their hearing sensitivity in response to an intense tone presented at a fixed rate but increasing level, without an otherwise explicit warning. Auditory brainstem responses (ABRs) to intermittent, 57-kHz tone bursts were continuously measured in two bottlenose dolphins as they were exposed to a series of 2-s, 40-kHz tones at fixed time intervals of 20, 25, or 29 s and at sound pressure levels (SPLs) increasing from 120 to 160 dB re 1 µPa. Results from one dolphin showed consistent ABR attenuation preceding intense tones when the SPL exceeded ∼140-150 dB re 1 µPa and the tone interval was 20 s. ABR attenuation with 25- or 29-s intense tone intervals was inconsistent. The second dolphin showed similar, but more subtle, effects. The results show dolphins can learn the timing of repetitive noise and may reduce their hearing sensitivity if the SPL is high enough, presumably to "self-mitigate" the noise effects.


Assuntos
Golfinho Nariz-de-Garrafa , Audição , Animais , Estimulação Acústica/métodos , Limiar Auditivo/fisiologia , Audição/fisiologia , Ruído , Golfinho Nariz-de-Garrafa/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA